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1. Notations and model setup

We specify the model. In this section, there are two dates t = 0 and t = 1
with trading possible at time t = 0. At t = 0 prices of all assets are known and
exogenous given. Therefore, we are in the setup of partial equilibrium where agents
have no influence on prices (they are so-called price takers).
The sample space Ω and its elements ω can either be a finite set or consist of a
continuum of elements ω. The elements ω are called states of the world. The value
of each state is assumed to be unknown to the investors but will be apparent at
t = 1 to the them. On the sample space a probability P is defined and we consider
a standard probability space (Ω,F , P ).
The following financial instruments exist. A cash - or bank account Bt where the
price at t = 0 is normalized to 1 (B0 = 1). The price at t = 1 of the bank account
can be stochastic or deterministic, in any case it is larger than 1 (B1(ω) ≥ 1 for all
ω). If the price at t = 1 is deterministic, we call Bt the risk-free asset. The interest
rate R is defined by

R =
B1 −B0

B0
= B1 − 1 ≥ 0 ,

which can be stochastic or deterministic according to the bank account under con-
sideration. Further examples of riskless assets are government bonds or bonds issued
by firm with a maximum rating. Although strictly speaking this instruments are
not risk free, since the default risk is for example not zero, this construction is at
least a good approximation to some real existing instruments.

The risky assets Sj(t), j = 1, . . . , N are defined as follows: Their prices at t = 0
are known and positive scalars. Their prices at t = 1 are non-negative random
variables whose value become known to the investors only at time t = 1. If there
is only a single asset, we write St by abuse of notation.
A trading strategy ψ = (ψ0, . . . , ψN ) describes the investor’s portfolio as carried
forward from time t = 0 to time t = 1. The component ψ0 is the amount of CHF
invested in the savings account and ψj , j > 0, is the number of units of the security
j held between the two times. If the components are negative, we speak about a
short position for the risky assets or borrowing for the bank account. We use the
word trading strategy and portfolio of an investor as synonyms.
A primitive financial market then consists of two dates, a probability space, the se-
curities with the exogenous given prices Bt, S1(t) . . . , SN (t), the trading strategies
and the assumption, that all investors prefer more money to less.
In this setup, we introduce various important quantities.

The value process V ψt (due to the strategy ψ) is defined by

V
ψ
t = ψ0Bt +

N∑

j=1

ψjSj(t) .

The initial value V0 is the initial wealth of the investor. With the difference operator
∆, defined by

∆Xj(t) = Xj(t)−Xj(t− 1)

the total profit or loss of a strategy ψ is expressed by the gain process Gt

Gψ(t) = ψ0r +

N∑

j=1

ψj∆Sj(t) .

It is useful to consider discounted values of future prices. The reason of discount-
ing is due to the need of comparing relative future prices of securities; hence we
normalize the prices. The discount instrument, which is called the numeraire, is
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in standard theory the bank account (Black-Scholes model, Cox-Ross-Rubinstein
model for example). But for more advanced models, choosing the bank account
as numeraire is not optimal. If Yt is used as numeraire for the security Xt, the
discounted variable is denoted by

X̃t =
Xt

Yt
.

Instead of working with prices, we often use return. The rate of return Rj(t) of a
security j at time t is defined by

Rj(1) =
Sj(1)− Sj(0)

Sj(0)
.

In our single period models the return of the cash account is the interest rate R.
The rate of return of Rj instrument j is a random variable for risky assets and,
typically assumed to be a real number for riskless assets.
If Rψ is the return of a portfolio corresponding to a strategy ψ and if V0 > 0, we
have

Rψ =
V
ψ
1 − V ψ0
V
ψ
0

.

Aside the trading strategies or portfolios defined for the absolute security prices it
is often more natural to use the normalized strategies

φ = (φ0, . . . φN ) , φ0 =
ψ0

V0
φk =

ψkSk(0)

V0
, k = 1, . . . , N .

Therefore, φk is the fraction of initial wealth invested in the security k. Since
there is a one-to-one relationship between prices and returns, we are free to work
with either of the two strategies. The following proposition summarizes the basic
relationship of all the expressions defined so far.

Proposition 1 (Bookkeeping Proposition).

V
ψ
1 = V

ψ
0 +Gψ

G̃ =

N∑

j=1

ψj∆S̃j

Ṽ1 = Ṽ0 + G̃

G = ψ0B0R+

N∑

j=1

ψjSj(0)Rj

S̃j(1)− S̃j(0) = Sj(0)
Rj −R
1 +R

Rψ = φ0R+

N∑

j=1

φjRj .

The proof is left to the reader.

Definition 2. Suppose that there are N risky assets and that a trading strategy
φ is given. The vector of expected values E[Rφ] and the covariance matrix are
denoted by

µ ∈ RN , µj = E[Rφj ] , Vkl = cov (Rφk , R
φ
l ) .

The expectations E[•] always is meant with respect to the (objective) proba-
bility P .
From the definitions we immediately get
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Proposition 3. The expected rate of return of a portfolio and the variance are
given by

E[Rφ] = 〈µ, φ〉 , var(Rφ) = 〈φ, V φ〉 .

2. Unrestricted Mean-variance analysis

We discuss in this section the classical Markowitz model.

Definition 4. A portfolio φ∗ is mean-variance efficient if there exist no port-
folio φ such that

E[Rφ] ≥ E[Rφ
∗

] , var(Rφ) < var(Rφ
∗

) . (1)

Instead of mean-variance efficient portfolios we often simply speak about effi-
cient portfolios. It is important to note what we are actually doing at this point.
We introduce a criterion to distinguish so-called efficient portfolios from other ones.
So far, this is a purely ad hoc criterion and a theoretical basis - for example a de-
cision theoretic foundation - is missing at this point. Simply, we start to discuss
portfolio selection by agreeing that the first and second moment of a portfolio solely
matter for selection. The question, whether there is any theoretical foundations is
discussed in Chapter X. For the rest of this chapter we agree on ad hoc rules and
see how far we can go in theory using them and how do they fit with real data.
The criterion is based on a return-risk trade-off. Therefore, the Markowitz theory
assumes that an investor not only values return but also risk matters. Hence, pref-
erences are more involved than preferences where we only agree that “more money
is better than less”.
Beside mean-variance efficient portfolios, it is often more convenient to work with
the larger class of minimum-variance portfolios. By definition, this set contains the
mean-variance efficient portfolios but it also includes the single portfolio with the
smallest variance at every level of expected return. In Figure ?? the two different
geometric loci are shown.
Another rule which we state is that for any investor using the mean-variance crite-
rion, the opportunity not to invest all of his wealth is dominated by any investment
in the financial assets. Therefore, all of his wealth is invested. Finally, there is no
possibility of borrowing in this model. In summary the model’s assumption are

Assumption 5 (Classical Markowitz model). The classical mean-variance model
of Markowitz is defined as follows.

(1) There are N risky assets and no risk free asset. Prices of all assets are
exogenous given. In other words, investors are price takers and they do
not affect prices.

(2) There is a single time period (t = 0, t = 1).
(3) There is probability space (Ω,F , P ).
(4) There are no transaction costs.
(5) Markets are liquid for all assets.
(6) Assets are infinitely divisible (we may buy π units of Roche).
(7) Full investment and no borrowing hold, i.e.3

〈e, φ〉 = 1

with e = (1, . . . , 1)′ ∈ Rn.
(8) Portfolios are selected according to the mean-variance criterion.

3The notation 〈x, y〉 =
∑

i xiyi denotes the scalar product.
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The assumption that investors are price takers has some far reaching conse-
quences which often are neglected by practitioners. Since price formation in the
stock markets for example is a result of individual interactions, the model we con-
sider in this section neglects this by assuming that prices fall from heaven. Although
for small investors the price taker behavior is a reasonable approximation, for large
investors this is certainly not true. More basic than this distinction according to the
wealthiness of the investors, is the question whether the mean-variance criterion in
selecting portfolios is ”supported by the market”. First, it is not at all clear what
”supported by the market” means. A rigorous characterization in economics is
based on general equilibrium theory: Roughly, we consider an arbitrary number of
different individuals each equipped with an endowment, preferences over consump-
tion and an optimization program. The program consists in finding consumption
and investment such that objective function (utility function) is optimized for each
individual. An equilibrium is then defined by:

(1) Prices for the assets such that the asset markets clear4,
(2) Investment strategies (portfolios) and consumption plans for all individ-

uals, such that the objective of each individual while respecting the indi-
vidual budget constraints.

If such a pair of prices and actions (the trading strategies, consumption plans) is
found, we call them a general financial equilibrium.
Answering this type of questions is much more harder than to solve the problem
we face in this section. But considering the equilibrium questions is crucial to
understand whether mean-variance analysis decision making can be consistent with
equilibrium behavior. Hence, we define mean-variance analysis to be ”supported” if
individuals choose this criterion in the equilibrium model as their optimal trading
strategy. Clearly we hope that there exist models which support mean-variance
analysis under very weak assumptions.
As a final comment we note that many bank runs in the last years occurred because
the management did not understand what the essential questions are if models are
implemented in the banks: First, one should ask how meaningful the model is
per se. In other words, does the model makes economic sense? Second, since it
is only a model, what are the issues not or not completely considered within the
model. In other words, only the assumptions the quants5 consider matter for the
outcome of the model. Third, does the bank possess the data with the required
quality to determine the parameters of the model? Fourth, and this is the most
difficult part, what are the consequences of the bank’s decision according to the
model if circumstances are changing. Circumstances can be regulatory requirements
or behavior of competitors for example. Finally, if a model is used to produce
benchmarks for asset managers for example, the managers have then an incentive
to “beat” the benchmark since their payment depend on how well they do relative
to the benchmark. If we assume that the model implemented is ill-behaved, then
the manager has an incentive to beat an ill-behaved model. For example, he is
encouraged or forced to face extreme risky positions. Hence, models may lead to
incentive distortions for the asset managers which can turn out to be disastrous for
the bank itself.
After this comments, we return to the mean-variance problem.

The question is, how can we systematically determine the mean-variance port-
folios. Intuitively, a goal is to minimize the variance of the portfolios for a given
expected return. In fact, that the following optimization is the key to find efficient

4This means, again loosely spoken, that demand and supply for the assets equalize.
5People in the financial industry with a math background are often called like this.
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Figure 1. Illustration of the technical assumptions 6.

portfolios.

min
φ

1

2
〈φ, V φ〉 (M) (2)

s.t. S = {φ ∈ RN | 〈e, φ〉 = 1 , 〈µ, φ〉 = r} .
(1) The admissible set does not excludes short selling, i.e. portfolio positions

φk < 0.
(2) The parameter r is exogenously given6.
(3) The Markowitz modelM is a quadratic optimization problem (quadratic

objective function and linear constraints). The feasibility set S is convex
since it is the intersection of two hyperplanes.

(4) The factor 1
2 is chosen for notational convenience.

(5) The solution(s) of the program depend(s) on the parameter r.

We impose the following technical conditions.

Assumption 6.
The covariance matrix is strictly positive definite.
The vectors e, µ are linearly independent.
All first and second moments of the random variables exist.

The positivity of the covariance matrix means that all N assets are indeed
risky. This also holds true for convex combinations of these assets. The linear
independence condition avoids a degenerate situation where the constraints in the
model M are contradicting unless

r =
〈µ, e〉
N

holds which is a non-generic situation.
We consider an example to illustrate the technical assumption. Suppose that two
assets are given and we assume that the covariance matrix is in the first case strictly
positive definite (two strictly positive eigenvalues) and indefinite in the second case
(a positive and a negative eigenvalue, see Figure 2). In the figure, risk level curves
and the two restrictions are shown. The restrictions are straight lines where we
considered for the expected rate of return two case parameterized by the returns
r1 < r2, respectively.

6”Exogenous” is used by economists to state that parameters, states or other type of variables

in a model are given and not chosen by the decision maker. ”Endogenous” means that the

corresponding quantity is chosen by the decision maker in the respective model.
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In the first case, if we further assume that the covariance matrix is symmetric,
the risk level curves are ellipses and hyperbolas in the second case (the original
coordinate system as well as the main-axis coordinate system are shown in the
figure). In the first case, if a higher return r2 is the goal of the investor, also the
corresponding risk level (=variance) increases. This is illustrated by the two points
A and B. In the second case, a transition from A to B contrary leads to a lower risk
exposure given a higher expected rate of return. Hence, the investor will always
chose zero investment in security φ1 and full investment φ2 = 1, independent of the
risk an return characteristics of the securities. The figure also shows that the linear
independence between the two vectors µ and e is necessary, else the two lines do
not intersect (unless in the non-generic case) and there does not exist a solution.

Proposition 7. If the Assumptions 6 hold, then the model M has a unique
solution.

Proof. The constraints are linear, hence convex. Since the intersection of con-
vex sets is convex (Proposition X), S is convex. The objective function is strictly
convex due to 6. The second condition in 6 implies that the gradients of the con-
straints are linearly independent, i.e. the Mangasarian-Fromowitz constraint qual-
ification holds which implies that the Abadie CQ holds. Therefore, all conditions
of Proposition X are satisfied. ¤

Proposition 8. If the Assumptions 6 hold, the solution of the modelM is

φ∗ = rφ∗0 − φ∗1 (3)

with

φ∗0 =
1

∆

(
〈e, V −1e〉V −1µ− 〈e, V −1µ〉V −1e

)

φ∗1 =
1

∆

(
〈e, V −1µ〉V −1µ− 〈µ, V −1µ〉V −1e

)

∆ = ||σ−1e||2||σ−1µ||2 − (〈σ−1e, σ−1µ〉)2

V = σσ′ , ||x|| =
√

〈x, x〉 . (4)

Proof. Forming the Lagrangian, the first order conditions or the KKT con-
ditions are

0 = V φ− λ1e− λ2µ (5)

1 = 〈e, φ〉 (6)

r = 〈µ, φ〉 . (7)

Since V is strictly positive definite, V −1 exists and from (6) follows

φ = λ1V
−1e+ λ2V

−1µ .

Multiplying this last equation from the left with e and µ, respectively, and using
the normalization condition and the return constraint, we get

1 = λ1〈e, V −1e〉+ λ2〈e, V −1µ〉
r = λ1〈µ, V −1e〉+ λ2〈µ, V −1µ〉 . (8)

If we set τ = (λ1, λ2)
′ and y = (1, r)′ the last system reads

y =

(
〈e, V −1e〉 〈e, V −1µ〉
〈µ, V −1e〉 〈µ, V −1µ〉

)

τ =: Aτ . (9)

The matrix A is invertible, since detA = ∆ > 0. This follows from the linear
independence of e and µ which implies that σ−1e and σ−1µ are linearly independent
and the Cauchy-Schwartz inequality 〈x, y〉2 ≤ ||x||2||y||2 which is a strict inequality
if the vectors x and y are linearely independent. Therefore, the system y = Aτ has
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a unique solution τ = A−1y. Considering the components of this matrix equation
and inserting them into φ = λ1V

−1e+ λ2V
−1µ implies (3). For further reference,

we note the optimal multiplier values:

λ1 = (A−1y)1 =
1

∆

(
−〈µ, V −1µ〉+ r〈e, V −1µ〉

)
(10)

λ2 = (A−1y)2 =
1

∆

(
−〈e, V −1µ〉+ r〈e, V −1e〉

)
. (11)

¤

We define the following expressions, which appear very frequent in the rest of
this chapter.

Definition 9.

a = 〈µ, V −1µ〉 , b = 〈e, V −1e〉 , c = 〈e, V −1µ〉 .
The following bounds hold.

Proposition 10. In the modelM, the following bounds hold true:

b ∈ [
N

λmax
,
N

λmin
] , c ∈ [

||µ||2
λmax

,
||µ||2
λmin

] , |a| ≤
√
N ||µ||
λmin

(12)

with λmax (λmin) the maximum (minimum) eigenvalue of V .

Proof. Sieve V is strictly positive definite, V > 0, 〈e, V −1e〉 > 0 Follows. For
e = Uy with U is a N ×N orthogonal matrix, we get

b = 〈e, V −1e〉 = 〈y, U ′V −1Uy〉 =
∑

i

λ
(V −1)
i y2i

≤ λ(V
−1)

max 〈y, y〉 = λ(V
−1)

max 〈e, U ′Ue〉 = λ(V
−1)

max ||e||2

=
1

λmin
N,

where U ′V −1U is a diagonal matrix. Similar, a lower bound follows for the smallest
eigenvalue which proves

〈e, V −1e〉 ∈ [λ
(V −1)
min ||e||2, λ(V −1)

max ||e||2] = [
N

λmax
,
N

λmin
] .

The proof of the second claim is analogous. To prove the last inequality, we first
note that the matrix

A = (e, µ)′V (e, µ) =

(
〈e, V −1e〉 〈e, V −1µ〉
〈e, V −1µ〉 〈µ, V −1µ〉

)

is invertible due to the independence of the vectors e and µ. The Cauchy-Schwarz
inequality implies that detA > 0 which is equivalent to

|〈e, V −1µ〉| ≤
√

〈µ, V −1µ〉〈e, V −1e〉 ≤
√
N ||µ||
λmin

.

¤

In the next step of the analysis, we calculate the corresponding variance for the
optimal portfolio φ∗ of Proposition 8. We get

σ2(r) = 〈φ∗, V, φ∗〉 = 〈r∗φ∗0 − φ∗1, V (r∗φ
∗
0 − φ∗1)〉 =

1

∆

(
r2b− 2rc+ a

)
. (13)

The locus of this set in the (σ(r), r)-space are hyperbolas (see Figure 2). Proposition
3 implies that the function

σ(r) =
√

〈φ∗, V φ∗〉
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Figure 2. Mean-variance illustrations in the (σ(r), r)-space. The

asymptotic line is given by r = σ + r∗
√

〈φ∗0, V φ∗0〉 and C = c.

provides the minimum standard deviation and variance for any given mean r. Since
V is positive definite, the quadratic form under the root is convex and positive.
Because the root is strictly increasing on the positive real numbers from Proposition
?? follows that the function σ(r) is convex. Therefore, the function has a unique
minimum r∗ which is given by the solution of

σ′(r) =
〈φ10, V (rφ∗0 − φ∗1)〉

f(r)
= 0,

i.e.

r∗ =
〈φ∗0, V φ∗1〉
〈φ∗0, V φ∗1〉

=
c

b
. (14)

With the results of Proposition 8 we can calculate the global minimum variance
portfolio φ∗m = φ∗m(r∗). We note that the components φ∗0 and φ∗1 in the optimal
portfolio (4) are independent on the value r. We then have

φ∗m(r∗) = r∗φ
∗
0 − φ∗1

=
c

b

1

∆

(
bV −1µ− cV −1e

)
− 1

∆

(
cV −1µ− aV −1e

)
=

1

∆
(a− c2

b
)V −1e .(15)

Therefore,

φ∗m(r∗) =
1

b
V −1e (16)

and the global minimum variance for this strategy is

σ(r∗)
2 =

1

b
. (17)

It is interesting to note that the global minimum variance is independent of the
return properties of the assets.
We finally define the efficient frontier and the notion of dominance.

Definition 11. The set

A := {(E[Rφ],
√

var(E[Rφ] )| φ ∈ RN , 〈φ, e〉 = 1} (18)
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Figure 3. The figure shows the minimum variance locus for the
example with three risky assets: The Standard& Poor’s index 500,
US Governement Bonds and a US Small Cap Index.

is the set of mean/standard deviation portfolios and the set

∂+A := {(r, σ(r))| r ≥ r∗} , ∂−A := {(r, σ(r))| r < r∗} (19)

is the efficient (inefficient) frontier (of the Markowitz model). Finally, if two port-
folios have the same mean, the one with the lower standard deviation is said to
dominate the one with the higher standard deviation.

The following facts are straightforward to verify:

• For all portfolios on the efficient frontier there exists no other portfolio
with the same mean and a lower standard deviation. In other words the
portfolios on the efficient frontier are not dominated by any other portfolio
in A.

• For each inefficient portfolio exists an efficient portfolio with the same
variance but a higher expected rate of return.

• It is straightforward to prove that any minimum variance portfolio, i.e. it
satisfies (3), is an efficient portfolio if

r ≥ c

b
= r∗

holds.

We consider the following simple example to illustrate the theory developed so
far. We consider the case of three risky instruments: The Standard& Poor’s index
500, US Government Bonds and a US Small Cap Index. This example shows that
in the mean variance analysis the risky instruments need not be pure assets but
they can be indices of several assets. On a monthly basis the expected returns are

µ = (0.0101, 0.00435, 0.0137)′ = ( Standard& Poor, US Gov. Bonds, Small Cap )′

and the covariance matrix V is

V =





0.003246 0.000229 0.004203
0.000229 0.000499 0.000192
0.004203 0.000192 0.007640



 .

Figure 2 shows the minimum variance locus for this example.
The next proposition characterizes the efficient frontier in terms of the expected

returns, variances and covariances of the returns.
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Proposition 12. Assume that the Assumptions 6 and

r ≥ c

b

hold in the modelM. A portfolio φ is efficient iff a positive affine relation between
the covariance of the return of each asset Ri with the portfolio R

φ and the expected
return exists. Formally,

cov(Ri, R
φ) = f

φ
1 E[Ri] + f

φ
2 , f

φ
1 ≥ 0 , i = 1, . . . , N . (20)

Proof. The vector of the covariances of the returns with the portfolio is ob-
tained by calculating V φ. To prove necessity, we assume that the portfolio φ is
efficient. It follows from (4)

V φ =
rb− c
∆

µ+
a− rc
∆

e

i.e.

cov(Ri, R
φ) =

rb− c
∆

µi +
a− rc
∆

=
bE[Rφ]− c

∆
E[Ri] +

a− cE[Rφ]

∆
. (21)

We have to verify bE[Rφ]−c
∆ ≥ 0. Linear independence of the vectors µ, e and the

Cauchy-Schwarz inequality imply ∆ > 0. Since E[Rφ] ≥ c
b
, necessity is proven. For

the minimum variance portfolio we note that E[Rφ
∗
min ] = c

b
. To prove sufficiency,

we assume that (20) holds true. In vector notation this reads

V φ = f
φ
1 µ+ f

φ
2 e , f

φ
i ≥ 0 .

The weights fφi of this portfolio are obtained by multiplication from the left with
V −1 and using the budget restriction 〈µ, φ〉 = E[Rφ] and the normalization cona-

tion. Solving the two equation with respect to fφ1 , f
φ
2 and inserting the results into

(20) implies that (4) is satisfied with E[rφ] ≥ c
b
. ¤

To interpret the condition (20) we make use of the following result.

Proposition 13. In the Markowitz modelM
∂σ2(r)

∂µk
= cov(Rk, R

φ∗) (22)

holds with φ∗ a minimum variance portfolio.

Proof. Exercise. ¤

It follows from this proposition that the impact of one unit more return in
asset k on the optimal variance equals the covariance of asset k with the mini-
mum variance portfolio. If the asset k is positively correlated with the portfolio,
a unit more return of this asset increases the variance and the contrary holds, if
the correlation is negative. Hence, to reduce the variance as much as possible, a
combination of negatively correlated assets should be chosen. This is the so-called
Markowitz phenomenon. With the result in Proposition 13, the condition (20) can
can be interpreted as follows. A portfolio is mean-variance efficient iff the marginal
contribution of each security to the portfolio risk is an positive, affine function of
the expected return.
The next goal is to rewrite the condition (20) in a form which is most widely used.

Proposition 14. Assume that the Assumptions 6 and

r ≥ c

b
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hold in the model M. A portfolio φ is efficient iff - with expectation of the global
minimum variance portfolio - there an uncorrelated, arbitrary portfolio φ̄, such
that

E[Rφi ] = E[Rφ̄i ] + cov(Ri, R
φ)
E[Rφ]− E[Rφ̄]

σ2(Rφ)
, i = 1, . . . , N (23)

with E[Rφ]− E[Rφ̄] > 0.

Proof. Exercise. ¤

The interpretation of (35) is the same one than for (20) . The slope of the

affine relationship between expected return and the covariance is E[Rφ]−E[Rφ̄]
σ2(Rφ)

. It is

widely used to define βi =
cov(Ri,R

φ)
σ2(Rφ)

and the vector of betas

β = (
cov(RN , R

φ)

σ2(Rφ)
, . . . ,

cov(RN , R
φ)

σ2(Rφ)
)′

is then a measure of the covariance of the assets with the efficient portfolio normal-
ized by the variance of the efficient portfolio.
In the model of Markowitz we consider the return restrictions 〈µ, φ〉 = r. It is
reasonable to ask what happen if we instead consider the constraint 〈µ, φ〉 ≥ r.
Therefore, an investor wishes a portfolio return which is at least equal to r. Sup-
pose, that 〈µ, φ〉 > r holds. By the slackness condition in the KKT theorem, the
corresponding multiplier for this constraint is zero. This simplifies the optimization
problem and we get for the optimal policy in this model

φ̂∗ =
V −1µ

c
. (24)

With this portfolio, an arbitrary optimal portfolio φ∗(r) can be written in the form

φ∗(r) = ν(r)φ∗m + (1− ν(r))φ̂∗ . (25)

The function ν(r) can be determined by the representation of φ∗(r) in Proposition 8.

We already found two decompositions of the optimal minimum variance portfo-
lio in two portfolios. In fact, we show that any minimum variance portfolio φ∗(r) can
always be written as a combination of two linearly independent minimum variance
portfolios. Since for any portfolio, there exists another one such that a weighted
combination is equal to the optimal portfolio, the decomposition is called the mutual
fund theorem in the literature. The next proposition summarizes the discussion.

Proposition 15 (Mutual Fund Theorem). Any minimum variance portfolio
can be written as a combination of the global minimum variance portfolio and the

portfolio φ̂∗. Furthermore, any minimum variance portfolio is a combination of any
two distinct minimum variance portfolios.

The second statement means that we can replace the global minimum variance

portfolio and φ̂∗ by any other combination of minimum variance portfolios.

Proof. We give two proofs, first an explicit one and the second proofs exploits
the convexity structure.
The KKT conditions in the proof of Proposition 8 imply that any solution of the
optimization problem is of the form

φ = λ1V
−1e+ λ2V

−1µ .

The first term is proportional to the global minimum variance portfolio while the

second one is proportional to φ̂∗. This proves the first claim. To prove the second
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claim, assume that φ1 and φ2 are two minimum variance portfolios. Then, they

can be spanned by the global minimum variance portfolio and the portfolio φ̂∗ due
to the first part of the proposition as follows

φi = (1− ai)φ∗m + aiφ̂∗ , i = 1, 2 .

A solution φ∗ of the minimum-variance problem can then be written as

φ∗ =
λ1b+ a2 − 1

a2 − a1 φ1 +
1− a1 − λ1b
a2 − a1 φ2 (26)

where the multiplier λ1 is given in (10). The coefficients of the above representation
add up to 1. This proves the claim.

Using the result of Chapter ??, Proposition ??, the value function σ2(r) of the
model M can be written in the form

σ2(z) = inf
φ
{〈φ, V φ〉| φ ∈ S , G(φ) = z} (27)

with z = (r, 1)′ and G(φ) = (〈µ, φ〉, 〈e, φ〉)′. Since all assumptions of Proposition
?? are fulfilled, σ2(z) is a convex, increasing function for r ≥ r∗. Therefore, for any
portfolio φ∗1, φ

∗
2 ∈ σ2(z) and for any 0 ≤ λ ≤ 1 there exist a portfolio φ∗3 in σ2(z)

which is a convex combination of the two portfolios, i.e.

λφ∗1 + (1− λ)φ∗2 = φ∗3 .

¤

Corollary 16. The efficient frontier is a convex set.

Proof. Exercise. ¤

The practical implication are the following ones. Suppose that an investor
wishes to invest optimally according to the mean-variance criterion. A possibility
is to buy the assets such as prescribed by the portfolio φ∗(r). But if the number of
assets is large this might be impossible to achieve since he is not wealthy enough
(consider for example the price of Swiss stocks!). The decomposition property helps
investor facing the described problem. Suppose, that there exist two funds with the
characteristic of the two portfolios in the decomposition (25). Then the investor
only has to invest in these two funds to buy the optimal portfolio.
The fact that σ2(z), z = (r, 1)′, is a convex, increasing function for r ≥ r∗ can
be used to highlight the trade-off between risk and return. By defintion σ2(z) is
increasing if z1 ≥ z2 implies σ2(z1) ≥ σ2(z2). But z1 ≥ z2 is equivalent to r1 ≥ r2,
i.e. the expected return of a portfolio φ(1) is larger than that one of φ(2), implies
σ2(z1) ≥ σ2(z2), i.e. the optimal risk of portfolio φ(1) is also larger than that one
of the portfolio φ(2).
We finally mention the asymptotic formula

lim
r→∞

(

σ(r)− r
√

〈φ∗0, V φ∗0〉
)

= −r∗
√

〈φ∗0, V φ∗0〉 . (28)

Prove this formula by direct computation.
The covariance properties of minimum variance portfolios are summarized in the
following proposition.

Proposition 17. The covariance of two minimum variance portfolios

φ∗i = (1− ai)φ∗m + aiφ̂
∗ , i = 1, 2

is given by

cov(Rφ
∗
1 , Rφ

∗
2 ) =

1

b
+
a1a2∆

bc2
. (29)
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The covariance of the global minimum variance portfolio φ∗m with any minimum
variance portfolio φ∗ is

cov(Rφ
∗
m , Rφ

∗

) =
1

b
. (30)

Proof.

cov(Rφ
∗
1 , Rφ

∗
2 ) = 〈φ∗1, V φ∗1〉

= (1− a1)(1− a2)〈φ∗m, V φ∗m〉+ a1a2〈φ̂∗, V φ̂∗〉+ (1− a1)a2〈φ∗m, V φ̂∗〉
+ a1(1− a2)〈φ̂∗, V φ∗m〉

= (1− a1)(1− a2)
b

b2
+ a1a2

a

c2
+

1− a1)a2c+ a1(1− a2)c
ba

= (1− a1)(1− a2)
1

b
+ a1a2

a

c2
+
a1 + a2 − 2a1a2

b

=
1

b
+
a1a2∆

bc2
.

If we set a1 = 0 the second claim follows. ¤

To close this section we consider an example. Consider the case of two securities
with the data µ1 = 1, µ2 = 0.9 and

V11 = 0.1, V22 = 0.15, V21 = V12 = −0.1 .
The expected return r is set equal to r = 0.96. Hence, the two assets are negatively
correlated and if we neglect the correlation structure, asset 2 does not seems to be
attractive since it possesses a lower expected return and a larger risk (measured
by the variance). However, the negative correlation will induce that it can be
advantageous to invest in the second asset too. First we consider the strategies
φ1 = (1, 0), φ2 = ( 12 ,

1
2 ). We get

var(Rφ1) = 0.1 , E(Rφ1) = 1 , var(Rφ2) = 0.0.0125 , E(Rφ1) = 0.95 .

Although φ1 satisfies the expected return condition r = 0.96, the risk is much
larger than for the strategy φ2 which in turn does not satisfy the expected return
condition. As a final strategy we consider φ3 which is obtained by solving the
optimization problem without imposing any restrictions on the expected return. It
follows that φ3 = ( 59 ,

4
9 ) is the searched portfolio and

var(Rφ3 = 0.011 , E(Rφ3) = 0.955 .

Hence the risk is minimum but the expected return is smaller than r = 0.96. Finally,
if we solve the full problem the optimal portfolio reads φ∗ = (0.6, 0.4) and we get

var(Rφ
∗

= 0.012 , E(Rφ
∗

) = 0.96 .

Hence, 40 percent has to be invested in the not very attractive asset which again
reflects the Markowitz phenomenon. For this portfolio, compared to the naive one
φ1, the variance is reduced drastically and the expected return is still acceptable.

3. Diversification

We consider diversification with respect to the number of assets N chosen in
the portfolio problem. Diversification could also be considered with respect to
criteria such as “sectorial diversification of the assets” for example. To start with,
we consider two returns R1, R2 and we denote σi =

√

var(Ri). It then follows

var(Rφ) = var(φ1R1 + φ2R2) = (φ1σ1 − φ2σ2)2 + φ1φ2σ1σ2(1 + σ12)
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with

σ12 =
cov(R1, R2)

σ1σ2
=
E[R1R2]− E[R1]E[R2]

σ1σ2
.

Hence, if φ1σ1 = φ2σ2 and σ12 = −1, risk vanishes

var(Rφ) = 0 .

Therefore, if R1 and R2 are perfectly negatively correlated, we can choose φ1, φ2
such that φ1σ1 = φ2σ2 holds and the portfolio is then riskless. Clearly, the ex-
pected return will be small to. This examples suggests, that in building an invest-
ment portfolio φ one must invest in possibly many negatively correlated securities
for reducting the variance of the portfolio. This rule is known as the Markowitz
phenomenon.
To proceed, we first assume that the N returns R1, . . . , RN are uncorrelated and
that there exist a constant c which is an upper bound for the risks, i.e. var(Ri) ≤ c

for all i. Using elementary properties of the variance

var(
N∑

i=1

φiRi) =
N∑

i=1

φ2i var(Ri) ≤ c

N∑

i=1

φ2i

follows. If we suppose that the investment is equidistributed for all securities, i.e.
φ = 1

N
, then

var(

N∑

i=1

φiRi) ≤ c

N∑

i=1

φ2i =
c

N
→ 0 , (N →∞).

This shows that to reduce the risk for uncorrelated securities under an equidistri-
bution investment strategy the number of assets invested in has to be increased.
What can be said if we relax the condition that assets are uncorrelated? In fact
most assets traded in stock exchanges are positively correlated. Again, we consider
the case of an equidistribution strategy φi =

1
N
. We then have

var〈φ, V φ〉 =

N∑

i=1

φ2i var(Ri) +

N∑

i,j=1,i6=j

φiφjcov(Ri, Rj)

= (
1

N
)2N

1

N

N∑

i=1

var(Ri) + (
1

N
)2(N2 −N)

1

N2 −N

N∑

i,j=1,i6=j

cov(Ri, Rj)

=
1

N
σ̄2N + (

1

N
)2(N2 −N) ¯covN

=
1

N
σ̄2N + (1− 1

N
) ¯covN ,

where we defined the mean variance σ̄2N and the mean covariance ¯covN . If the the
mean variance is bounded, σ̄2N ≤ N , and the mean covariance converges to a limit
value ¯cov∞ for N →∞, then

var(Rφ)→ ¯cov∞ , (N →∞).

Hence, if ¯cov∞ = 0, using diversification inN implies that the risk can be arbitrarily
reduced. Typically, ¯cov∞ does not converges to zero for an increasing number of
assets. The risk remaining risk

¯cov∞ = lim
N→∞

¯covN

can not be diversified and is called the systematic (market) risk. The diversifiable
risk 1

N
σ̄2N is the unsystematic risk.
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4. Mean-variance analysis with a riskless asset

We assume that there exist a riskless asset Bt with return µ0 = B(1) − 1.
Furthermore, there are N risky assets in the economy and we assume that the mean-
variance criterion is used to select portfolios. All other properties of the economy
and of the financial market are left unchanged. Also, the technical assumption are
assumed to hold true, i.e. the covariance matrix is strictly positive, the vectors
e = (1, . . . , 1) ∈ RN and µ = (µ0, µ1, . . . µN ) are linearly independent, where µ0 is
the (expected) return of the riskless asset. The optimization problem then reads

min
φ

1

2
〈φ, V φ〉 MR (31)

s.t. SR = {φ ∈ RN | 〈e, φ〉 = 1− φ0
〈µ, φ〉 = r − µ0φ0 }

The solution of this problem follows that one of Proposition 8, it is even simpler.
We assume that the covariance matrix is strictly positive and that the vectors µ and
µ0e are linearly independent. The results are summarized in the next proposition.

Proposition 18. If the same assumptions as in Proposition 8 hold, then the
modelMR possesses the solution

φ∗ = λ∗V −1(µ− µ0e) (32)

λ∗ =
r − µ0

a− 2µ0c+ µ20b
=:

r − µ0
∆R

.

The locus of minimum variance portfolios is given by

σR(r) = ±
r − µ0√

∆R

. (33)

The proof of the proposition is left to the reader since it is similar than the
proof with risky assets only. It follows, that the in σ(r), r)-space the locus of
the minimum-variance set are again (degenerated) hyperbolas, i.e. straight lines.
The next proposition characterizes minimum variance portfolios and specifies a
”canonical” representation of minimum variance portfolios.

Proposition 19. (1) All minimum variance portfolio are combinations
of any two linearly independent minimum variance portfolios.

(2) The minimum variance portfolio in the model MR with zero investment
in the riskless asset (φ0 = 0) is given by

φT =
1

c− µ0b
V −1µ− µ0

c− µ0b
V −1e . (34)

This portfolio is called the tangency or market portfolio. The tangency
portfolio is also an efficient portfolio in the modelM.

(3) The efficient portfolios of the model MR on the branch r = µ0 + σ
√
∆R

is tangent to the efficient frontier of the modelM.

Proof. The proof of 1. directly follows from the convexity of the set

σ2R(z) = inf
φ
{〈φ, V φ〉| φ ∈ SR , GR(z) = z} ,

with GR and z the appropriate matrix and vector of the problem MR. To prove
2., we note that the risky assets investments add up to 1 and multiplication of (32)
by e from the left then implies

1 = λ∗〈e, V −1(µ− µ0e)〉 =⇒ λ∗ =
1

c− µ0b
.
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Figure 4. Mean-variance illustrations in the (σ(r), r)-space for
the case with and without a riskless asset, respectively.

Substituting this value in (32) proves 2. To prove that the tangency portfolio is
efficient, we first calculate the expected return of the tangency portfolio. It follows

r = 〈µ, φT 〉 = a− φ0c
c− φ0b

.

Inserting this in the optimal minimum variance portfolio expression of Proposition
8 implies

φ∗ =
a− ca−φ0c

c−φ0b

∆
V −1e+

−c+ ba−φ0c
c−φ0b

∆
V −1µ

=
1

c− µ0b
V −1µ− φr

c− µ0b
V −1e = φT ,

after some algebra. To prove 3., we first derive the mean-variance relationship of
the classical model M (equation (13)),

dσ(r)

dr
=

1
√

∆(br2 − 2rc+ a〉)
(br − c) .

If we evaluate the derivative at the point of the tangency portfolio, we get

dσT (r)

dr
=
(
bµ20 − 2µ0c+ a

) 1
2

which is the inverse of the slope of the former derivative at µ0 = r. ¤

Figure 4 compares the different loci in the (σ(r), r)-space in the case with and
without riskless asset, respectively.

Figure 4 also indicates the following holds true, which in fact can easily be
proven:

Proposition 20. Assume the models M and MR be given and that µ0 6= r∗.
Then the tangency portfolio is element of the efficient frontier iff µ0 < r∗. The
tangency portfolio is element of the inefficient part of the minimum variance locus
iff µ0 > r∗. If µ0 = r∗, the tangency portfolios does not exists for any finite risk and
return. The portfolios are then given by the intersection of the asymptotic portfolios
and the efficient set at infinity.
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Figure 5. The efficient frontiers for two Markowitz-type models
are shown: The Markowitz model without and with short selling
restrictions. Data: SMI, daily, year 2000

We have proven that as in the case of risky-assets only any minimum variance
portfolio is a linear combination of two distinct minimum variance portfolios. Con-
trary to the risky-asset only case, there is a natural choice of the mutual funds:
The riskless asset and the fund with no riskless asset, i.e. the tangency portfolio
φT . A necessary and sufficient condition - analogous to the risky asset only case in
Proposition 14 - can be given.

Proposition 21. Assume that the technical assumptions hold in the model
MR. For a portfolio φ being an efficient portfolio necessary and sufficient is

E[Rφi ] = µ0 + cov(Ri, R
φ)
E[Rφ]− µ0]
σ2(Rφ)

, i = 1, . . . , N (35)

with E[Rφ]− µ0 > 0.

Since the proof is analogous to the proof of Proposition 14, it is omitted.

5. Numerical examples

Figures 5, 5 and ?? illustrate the Markowitz model for the Swiss Market Index
(SMI). For the analysis, daily data of the year 2000 where used. Figures 5 illus-
trates the fact that imposing linear restrictions, such as short selling restrictions in
this example, implies that the feasible set of portfolios with restrictions is a sub-
set of the feasible set without restrictions. Hence, for the same risk, the expected
return of the efficient portfolio without restrictions dominates that one with short
selling restrictions. Figures 5 and ?? compare the optimal portfolio weights for
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Source: ZKB, Z-Quants Workshop, P. Bruegger, Corporate Risk Control
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Figure 6. Portfolio weights for the SMI compared with the effi-
cient portfolio weights in the Markowitz model, where once short
selling was allowed and in the second calculation short selling was
forbidden. Data: SMI, daily, year 2000

the SMI with and without short selling restrictions and the weights how they are
used at the end of March 2001 in the index SMI. A first glimpse shows that the
Markowitz model hardly can called an appropriate model for the SMI. We see that
two securities, which contribute to the SMI with about 1 percent, indeed have in
the case with no short selling conditions a weight of 19.45 and 40.21 percent re-
spectively. These two assets, Rentenanstalt and Baloise Insurance Company, both
faced ”abnormal” events in the year 2000 where the data for the mean-variance are
considered. First, there was strong rumor in the market that Rentenanstalt was
taken over by Generali. This led to the usual overreactions of market participants.
Baloise contrary faced a strong demand for its assets due to the heavy investment
of the BZ bank. This two examples indicate that for the mean-variance analysis
stocks which are under ”regular” trading should be considered only. Figure 5 com-
pares the SMI weights with the mean-variance with where once the two assets are
incorporated and deleted (with weight equal to zero), respectively. If we compare
the optimal values in the two setups, we see that the distribution of about 60 per-
cent of wealth from the two deleted assets, is not not uniformally on the remaining
assets. This non-linearity is due to the new correlations between the SMI assets.
Furthermore, if we calculate the difference between the optimal weight for each as-
set to its SMI weight, sum the differences and take the square root, it follows that
the error decreased by a 30 percent if the two extreme assets are deleted. Another
improvement is achieved if we consider more than one year to determine the value
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Stock SMI-Weighting Mean Variance [%]Mean Variance [%]
delta 
normal

delta normal
 VaR [%]

Return 
year 2000

[%]
Short Selling 
Restrictions

No Short 
Sell Restrictions

Short 
Selling 

No Short 
Sell [%]

NOV 19.24 14.47 21.57 14.47 21.57 30
ROG 14.88 - 1.80 - 1.80 -5
NES 13.78 10.52 8.17 10.52 8.17 35
UBS 11.01 - 4.40 - 4.40 30
CSG 10.63 - -6.05 - -6.05 0
ABB 6.86 - -1.52 - -1.52 -5
ZUR 4.78 - -8.63 - -8.63 10
RUK 4.83 - 14.59 - 14.59 25
SCM 1.90 - -0.09 - -0.09 -35
ADE 2.38 - -2.33 - -2.33 -15
CLR 1.07 - -10.68 - -10.68 -20
HOL 1.26 - 3.98 - 3.98 -5
RA 1.27 24.68 19.45 24.68 19.45 50
ALUS 0.78 - -1.38 - -1.38 -20
UHR 0.82 2.02 0.90 2.02 0.90 15
BAL 0.99 47.46 40.21 47.46 40.21 40
CIB 0.81 - 7.49 - 7.49 -5
LON 0.68 - -0.43 - -0.43 0
SUL 0.48 - 5.73 - 5.73 10
UHR 0.69 - 4.93 - 4.93 15
SGS 0.40 0.85 2.96 0.85 2.96 10
SWS 0.47 - -5.08 - -5.08 -15

Source: ZKB, Z-Quants Workshop, P. Bruegger, Corporate Risk Control

Figure 7. Portfolio weights for the SMI compared with the effi-
cient portfolio weights in the Markowitz model, where once short
selling was allowed and in the second calculation short selling was
forbidden. In this table also data for the delta-normal approach to
mean-Value-at-Risk portfolio optimization are shown. The results
will be used in the next chapter. Data: SMI, daily, year 2000

of the model parameters. In Figure 5 efficient frontiers for the SMI with two and
one year daily data are shown. It follows it we compare the optimal investments
for these two cases without the two extreme assets, that the error is reduced by
another 15 percent.

In summary, this examples indicate that

(1) If assets facing extreme events (mergers, take overs) are part of the data
used to estimate the model parameter, they should not be considered.

(2) The longer a time series the ”more stable” the Markowitz model seems to
be. But if the series is to long such that in the mean while economy un-
derwent structural changes, parameters which does not reflect the present
economy are estimated.

(3) If assets are deleted after a first optimization, their percentages of wealth
can not be distributed symmetrically on the remaining assets. The re-
distribution is non-linear due to the changes correlations and has to be
calculated again.

As a final example, we reconsider the example with three risky instruments: The
Standard& Poor’s index 500, US Government Bonds and a US Small Cap Index.
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Opt SMI
SMI 
Weights

Optimal
SMI

Without 
Rentenanstalt and
Baloise

Deviation
SMI - 
SMI optimal

Deviation
SMI -
SMI opt. without RA 
and BA

NOV 19.24 21.57 35.09 5.42 251.19
ROG 14.88 1.80 6.55 171.19 69.46
NES 13.78 8.17 19.55 31.49 33.28
UBS 11.01 4.40 5.41 43.69 31.36
CSG 10.63 -6.05 -5.76 278.31 268.72
ABB 6.86 -1.52 0.14 70.27 45.20
ZUR 4.78 -8.63 -3.48 179.77 68.19
RUK 4.83 14.59 17.95 95.16 172.01
SCM 1.90 -0.09 -0.97 3.96 8.23
ADE 2.38 -2.33 -0.41 22.19 7.79
CLR 1.07 -10.68 -14.05 138.01 228.54
HOL 1.26 3.98 5.54 7.38 18.29
RA 1.27 19.45 0.00 330.69 1.60
ALUS 0.78 -1.38 -1.48 4.65 5.09
UHR 0.82 0.90 0.53 0.01 0.08
BAL 0.99 40.21 0.00 1538.50 0.97
CIB 0.81 7.49 3.24 44.65 5.91
LON 0.68 -0.43 12.10 1.24 130.38
SUL 0.48 5.73 8.69 27.59 67.44
UHR 0.69 4.93 7.01 18.02 40.00
SGS 0.40 2.96 6.71 6.55 39.81
SWS 0.47 -5.08 -2.37 30.76 8.04

Square-root of 
quadratic error 55.2221301 38.75022809

Figure 8. Comparing the efficient frontier for the SMI with one-
year versus two-years daily data.

On a monthly basis the expected returns are

µ = (0.0101, 0.00435, 0.0137)′ = ( Standard& Poor, US Gov. Bonds, Small Cap )′

and the covariance matrix V is

V =





0.003246 0.000229 0.004203
0.000229 0.000499 0.000192
0.004203 0.000192 0.007640



 .

The optimal strategy then is

φ∗ = (0.4520, 0.1155, 0.4324) .

We next assume that the parameters of the model, which are estimated using
historical data, will in effect be different in the future by a small amount. We
consider the impact of 5 percent misspecified parameters in various scenarios.

(1) Scenario A: All return are 5 percent higher than the estimated ones.
(2) Scenario B: The covariance matrix entries between the Standard& Poor

and the US Gov. Bonds are are 5 percent higher than the estimated ones.
(3) Scenario C: The covariance matrix entries between the Standard& Poor

and the US Gov. Bonds are are 5 percent smaller than the estimated ones.
(4) Scenario D: All covariance matrix entries are at random perturbed by ±5

percent.
(5) Scenario E: The variance entry for the Standard& Poor is 5 percent higher

than the estimated one.
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Figure 9. Comparing the efficient frontier for the SMI with one-
year versus two-years daily data.

With this scenarios, the following differences to the original optimal strategy φ∗

result:

Scenario Difference in investment
A (0.0289,−0.0671, 0.0381)
B (−0.0007, 0.0002, 0.0004)
C (0.0006,−0.0002,−0.0004)
D (−0.1819, 0.06994, 0.1120)
E (−0.0926, 0.03560, 0.0570

The differences in investment are not relative changes with respect to the original
strategy but absolute ones! Hence, the number −0.1819 for the Standard& Poor
in scenario D means that instead of investing 45.20 percent of wealth in this in-
dex, 63.39 percent have to be optimally invested if the whole covariance matrix
is perturbed at random by ±5 percent changes. It follows, that the effect various
from negligible to a more than a 50 percent changement of the original optimal
investment.
In summary, small variations of the input parameters in the Markowitz model -
returns and covariance matrix - can have a very large range of implications on op-
timal investment: From negligible changes to a radically different new strategy.
Hence, a further basic issue is to determine the model parameters correctly. But,
what does this mean? It is intuitively clear, that the usual approach of histori-
cal estimation of these parameters is only suitable if market circumstances are not
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changing - and as we have seen, for some parameter values they are not allowed
to change even a little. The Markowitz model makes no suggestions how these
parameter are to be found.

6. Mean-variance analysis in complete markets

We consider the case of two assets. It then follows from finance theory, that
financial market is complete if and only if the number of states equals the number
of assets with linearly independent payoff. Therefore, we assume that there are two
states and the (objective) probability law is the binomial law with probabilities p
and 1− p for the state realizations, respectively. The expected return relation is

〈µ, φ〉 = µ1φ1 + µ2φ2 = r .

The standard deviation can be written in the form

σ(φ) = ±
√

p(1− p) ((V11 − V21)φ1 + (V12 − V22)φ2) .
The iso-risk contours σ(φ) = σ̄ are linear in the trading strategies as the iso-
expected return are. Solving these two linear equations for the trading strategy
again implies a linear relationship between return and risk. This linearity is also
maintained in the full optimization program, i.e. the relationship in the (σ, µ)- space
is linear as for the case with a riskless asset. Since the two linear rays intersect at
the point (0, r), the variance of the global minimum variance portfolio is zero (as
in the case with a riskless asset).
We prove the claims in the next step. The formal model reads

min
φ

1

2
〈φ, V φ〉 = 1

2
p(1− p)((V11 − V21)φ1 + (V12 − V22)φ2)2 (Mcomp)(36)

s.t. φ1 + φ2 = 1

µ1φ1 + µ2φ2 = r .

Replacing φ2 using the normalization condition, the first order condition solved
with respect to φ∗1 implies

φ∗1 =
λ(µ1 − µ2)

p(1− p)∆2
comP

− V12 − V22
∆comp

=: λx− y . (37)

with

∆comp = V11 − V21 + V22 − V12 .
Using the expected return condition, the multiplier λ is

λ =
p(1− p)∆2

comp

µ1 − µ2

(
r − µ2
µ1 − µ2

+
V12 − V22
∆comp

)

. (38)

Inserting (37) and (38) into the value function implies

σ2comp(r) = min
φ

1

2
〈φ, V φ〉 = 1

2
p(1− p)((V11 − V21)φ1 + (V12 − V22)φ2)2 (39)

=
1

2
p(1− p)∆2

comp(λx−y +
V12 − V22
∆comp

︸ ︷︷ ︸

=0

)2 =
1

2
p(1− p)∆2

comp(λx)
2.

Therefore,

σcomp(r) = ±
√

1

2
p(1− p)∆compλx (40)
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which proves that the minimum variance efficient set in the (σ, r)-space are straight
lines. Inserting the explicit expressions we get

σcomp(r) = ±
√

1

2
p(1− p)∆comp

(
r − µ2
µ1 − µ2

+
V12 − V22
∆comp

)

. (41)

It follows that σcomp(r) = 0 if either p = 0 or p = 1, or for 0 < p < 1 the expected
return condition

r∗ =
µ1(V22 − V12) + µ2(V11 − V21)

∆comp

implies that the variance of the optimal portfolio is zero. If the two assets are
negatively correlated, r∗ > 0 follows. Hence, in this case we can achieve a zero-
variance optimal portfolio and expect a positive return.

The result in this section shows a basic difference between complete and in-
complete financial markets. In complete financial markets with risky assets only it
is possible to eliminate risk completely and to expect a positive return. This is not
possible in the case of incomplete financial markets. The locus in this example are
qualitatively not different to the incomplete case since straight lines are just the
stretched out hyperbolas of the incomplete market.

7. Mean-variance analysis and no arbitrage

We shortly recall some notions from mathematical finance. The Markowitz
model is based on a probability space (Ω,F , P ) with P the objective probability of
the security prices.

Definition 22. Let Q be an equivalent probability measure to P . If all dis-

counted prices at time t = 1 (
Sj(1)
B(1) ), j = 1, . . . , N , are Q-martingales, we call Q a

risk neutral probability (RNP)7

The easy to prove part of the Fundamental Theorem of Finance implies that
the existence of a RNP implies the absence of arbitrage. This means,

Definition 23. An arbitrage is a portfolio ψ such that starting from zero initial

wealth V ψ0 = 0 with certainty no losses occur, i.e.

P (V ψ1 ≥ 0) = 1 , P (V ψ1 > 0) > 0 .

We assume in the sequel that the primitive financial market is free of arbitrage.
If ψ is normalized portfolio and Q a RNP we calculate the discounted value process
(wealth process) using the Bookkeeping Proposition 1:

E
ψ
Q[
V1

B1
|F ] = E

ψ
Q[
V0 +G

B1
|F ]

=
V0

B1
+ E

ψ
Q[
ψ0r +

∑

j ψj∆Sj(1)

B1
|F ] =

ψ0B(0) + ψ0r

B1
+

∑

j ψjSj(0)

B1

= ψ0 · 1 +
∑

j

ψjSj(0) =
V0

B0
= V0 .

Hence we proved

Proposition 24. If Q is a RNP, for all strategies ψ the discounted portfolio
process is a Q-martingale.

7Sometimes Q is also called a risk adjusted measure in the literature.
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The remarkable fact is that the strategy chosen does not matter in the propo-
sition. Since

S̃j(1)− S̃j(0) = Sj(0)
Rj −R
1 +R

it follows at once

Proposition 25. If Q(ω) > 0 for all ω ∈ Ω is a probability measure, then Q
is a RNP iff

EQ[
Rj −R
1 +R

] = 0 , j = 1, . . . , N . (42)

If we assume that the interest rate R0 is deterministic, (42) simplifies to

EQ[Rj ] = R0 , j = 1, . . . , N . (43)

This condition has a beautiful interpretation. Suppose that markets are free of
arbitrage and that there exists a deterministic interest rate. Then the expected
rate of return of all risky assets are equal and are given by the risk free rate under
the risk neutral probability. We finally recall that a contingent claimX is attainable
if there exists a portfolio φ such that

X(ω) = V φ(ω) , ∀ω ∈ Ω

holds. The next proposition summarizes the impact of no-arbitrage on the rela-
tionship between different portfolios.

Proposition 26. Suppose that the primitive financial market is free of arbi-
trage and that there exists a risk free security with interest rate R0 = µ0. For Q a
RNP, let

L(ω) =
Q(ω)

P (ω)

be the state price vector (or state price density) which possesses a first moment.
Suppose further that the random variable (contingent claim)

X = a+ bL , a, b ∈ R, b 6= 0

is attainable for some normalized portfolio φ̂ with return Rφ̂. Let Rφ be the return
of an arbitrary portfolio φ. Then

E[Rφ]− µ0 =
cov(Rφ̂, Rφ)

var(Rφ̂)
(E[Rφ̂]− µ0) . (44)

Proof. To start with, we calculate

cov(Rφj , L) = E[Rφj L]− E[Rφj ]E[L] = E[Rφj L]− E[Rφj ]

= EQ[R
φ
j ]− E[Rφj ] = R0 − E[Rφj ] ,∀j.

Hence,

−cov(Rφ, L) = E[Rφ]−R0 (45)

follows. Let φ̂ be the strategy such that the contingent claim X = a + bL is
attainable. Then

V
φ̂
1 = a+ bL ⇒ V

φ̂
0 (1 +Rφ̂) = a+ bL .

Hence, solving for L implies

L =
V
φ̂
0 (1 +Rφ̂)

b
− a

b
.
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Inserting this expression into (45) leads to

cov(Rφ, L) =
V
φ̂
0

b
cov(Rφ, Rφ̂) . (46)

Therefore,

E[Rφ]−R0 = −V
φ̂
0

b
cov(Rφ, Rφ̂) (47)

follows. To eliminate initial wealth V0, we set φ = φ̂ in the last equality which
implies

E[Rφ̂]−R0 = −V
φ̂
0

b
var(Rφ̂) . (48)

Solving (48) with respect to initial wealth and inserting the result in (47) proves
the claim. ¤

If we compare Proposition 26 with Proposition 21, where a characterization
of efficient portfolios in the Markowitz model with a riskless asset is given, an
astonishing similarity shows up. Under technical conditions, in the later proposition
a portfolio is efficient iff

E[Rφi ]−R0 = cov(Ri, R
φ)
E[Rφ]− µ0]
σ2(Rφ)

, i = 1, . . . , N (49)

with E[Rφ] − µ0 > 0 holds. Although the functional form is the same in both
approaches there significant differences in the underlying assumptions. First, an
optimization problem was solved in one approach while the no-arbitrage notion
was used in the other one. Second, in the optimization approach an affine rela-
tionship between the return of each portfolio component with the whole portfolio
is equivalent to the efficiency of the portfolio in the second approach an affine rela-
tionship of the state price density and a portfolio to hedge this claim enters.

Why does such seemingly different approaches lead to such similar results? The
answer will be given in the Chapter ”Economic foundations”.

8. Mean-variance analysis under investment restrictions

In the classical Markowitz model, the investment is unrestricted. That is, for
example there are no short-sale restrictions.
This situation is highly stylized. In real investment problems, restrictions are often
imposed either by regulatory authorities or there are internal restrictions in the
firm which are to be respected. Restrictions can be imposed in various respects:

(1) Limitations in the risk exposure. For example a number ε > 0 is exogenous
given such that 〈φ, V φ〉 ≤ ε. Another famous example is a limitation of
the Value at Risk (VaR) of a portfolio of a trading unit. This latter
restriction is more fundamental than the prior one since the risk measure
of the Markowitz model (variance) is exchanged with a new measure for
the risk exposure (VaR). Hence, imposing VaR-restrictions means to chose
a new model.

(2) Diversification restrictions. An example of such a restriction is for example
that the percentage amount of a portfolio invested in Swiss Market Blue
Chips has not to be lower than 10 percent and is to be smaller than 30
percent.
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(3) Liquidity restrictions are very important for the banking firm. Typically,
this kind of restrictions has to be addressed in dynamic models of portfolio
selection.

In this section we only consider diversification restrictions of the form

a ≤ φ ≤ b , a, b, φ ∈ RN . (50)

In other words, the fractions of wealth invested in the securities has to lie within
pre specified bounds. We assume that the two conditions

N∑

j=1

aj ≤ 1 ,
N∑

j=1

bj ≥ 1 (51)

hold. The first one is necessary for the portfolio problem to have a solution and the
second one assures that total wealth will be invested. The optimization problem
then reads

min
φ

1

2
〈φ, V φ〉 (Mrest) (52)

s.t. Srest = {φ ∈ RN | 〈e, φ〉 = 1 , 〈µ, φ〉 = r , a ≤ φ ≤ b , a, b ∈ RN} .
Since the set S is an intersection of halfspaces and hyperplanes, it is a convex set and
the program is itself convex. The constraints a ≤ φ ≤ b look very innocent. But we
will see in the rest of this section that this not the case both from the mathematical
and economic point of view. While the mathematical difficulties can be overcome
by using computers we will show in examples that the economic consequences of
such restrictions depend on an essential non-trivial way on all parameters of the
problem. It is therefore doubtful whether regulatory authorities are aware of their
consequence by imposing such innocent looking restrictions.
The KKT theorem still applies since the feasible set is still convex as an intersection
of 2 hyperplanes and 2N half-spaces. We introduce the block matrices

D1 = diag (λ3, . . . , λN+2) , D2 = diag (λN+3, . . . , λ2N+2) .

The numeration starts with 3 since λ1, λ2 are used for the normalization - and the
return condition, respectively. Since for each security there are two constraints,
we have 2N multipliers. The matrix D1 (D2) summarizes the multipliers for the
a-constraints (b-constraints).

0 = V φ− λ1e− λ2µ−D1a+D2b (53)

〈e, φ〉 = 1 , 〈µ, φ〉 = r

λj ≥ 0 , j = 3, 4, . . . 2N + 2

λj,k(ak − φk) = 0 , j = 3, . . . , N + 2

λj,k(φk − bk) = 0 , j = N + 3, . . . , 2N + 2 .

The KKT theorem then implies that at most 3N different cases have to be con-
sidered to find the optimal solution. More explicitly, a single case is analyzed as
follows. Suppose that some of the assets bind and the others are not binding; this
defines the particular case. Then, for the non binding assets, the respective multi-
pliers for the upper and lower restriction have to be zero, else the slackness condition
is violated. Then, since for the binding assets the portfolio contribution are known
(the contributions of the restrictions), it seems that the number of variables which
are to be found by solving the optimization program is reduced. This is wrong,
since for each binding portfolio component we have to determine according to the
KKT conditions whether the sign of the associated multiplier is positive. Therefore,
we have to solve a system with the same dimensionality as in the unrestricted case.
Suppose that no all of these multipliers turn out to be positive. Then, the guess



30 Optimal Portfolio Selection, Chapter 1 Version April 22, 2001

that the case under consideration is an optimum is wrong. How do we proceed
then? The KKT conditions provide us with the information of how much we are
willing to pay for an extra unit of portfolio component at each constraint: A strictly
positive value if a constraint is truly binding, zero if the constraint is not binding
and a negative value if we assumed that a component will bind the case under con-
sideration but in effect it does not. To proceed analytically using this information
is very cumbersome if the number of assets is larger than 2. But fortunately there
exist powerful algorithms which can do this routine checking systematically and
for a large class of assets (see for example the Active Direction Algorithm). But
to learn about the impact of restrictions, it is nevertheless unavoidable to work
analytically. Before we consider examples, we analyze the general properties of the
feasible set A if linear investment restrictions are imposed.
We formulate the restricted optimization problem in the form

σ2rest(z) = min
φ
{〈φ, V φ〉| 〈e, φ〉 = 1 , 〈µ, φ〉 = r , −φ ≥ −b , φ ≥ a}

= min
φ
{〈φ, V φ〉| G(φ) ≥ zrest}

with zrest = (1, r, a,−b)′ and G(φ) = (〈e, φ〉, 〈µ, φ〉, φ,−φ)′. The function σ2rest(zres
is convex and increasing if r ≥ r∗ (see Chapter ??, Proposition ??). We define the
following vectors:

z = (1, r, 0,−1) , (unrestricted investment)

zdown = (1, r, a,−1) , (downside restrictions)

zup = (1, r, 0,−b) , (upside restrictions)

and we denote with A the feasible set in the unrestricted case, with Adown in the
downside case and with Aup in the upside case, respectively. For a given expected
return r, we have

z ≤ zdown ≤ zrest , z ≤ zup ≤ zrest

which implies

σ2(z) ≤ σ2(zdown) ≤ σ2(zrest) , σ
2(z) ≤ σ2(zup) ≤ σ2(zrest) .

Therefore, in the case of restrictions it is not possible to attain the same expected
level of return r as in the unrestricted case with lower risk. This implies for the
feassible sets

Arest ⊂ Adown ⊂ A , Arest ⊂ Aup ⊂ A .

We note, that there exists no ordering between zdown and zup.
The simplest example we consider next is the two asset case with a single restric-
tion for one asset, i.e.

min
φ

1

2
〈φ, V φ〉 (Mrest,example) (54)

s.t. Srest = {φ ∈ R2| 〈e, φ〉 = 1 , 〈µ, φ〉 = r , a1 ≤ φ1 , 0 ≤ a1} . (55)

The optimality conditions then read

0 = V φ− λ1e− λ2µ−Da1 , D =

(
λ3 0
0 0

)

(56)

〈e, φ〉 = 1 , 〈µ, φ〉 = r

λ3 ≥ 0

λ3(a1 − φ1) = 0 . (57)

To solve the optimality conditions for the optimal investment and the optimal
multipliers different case have to be distinguished.
Case I
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We assume that φ1 > a1, i.e. that the restriction on investment in the first asset is
not binding. The complementary slackness condition λ3(a1 − φ1) = 0 then implies
that ll3 = 0 which (i) is a positive value and (ii) clearly leads to the optimal solution
φ∗ of the unresticted problem given in Proposition .
Case II

In the second case, which is the only one missing in this example, we assume that
φ1 = a1. Hence we get for the three multipliers the following linear equation
system to solve:

〈e, φ〉 = 1 = λ1b+ λ2c+ λ3a1 (58)

〈µ, φ〉 = r = λ1c+ λ2a+ λsµ1a1

φ1 = a1 = λ1(V
−1e)1 + λ2(V

−1µ)1 + λ3a1 (59)

with (x)i the ith component of the vector x. Solving the system implies

λrest1 =
a1(cµ1 − a) + a− rc+ (V −1µ)1(r − µ1)

−∆+ (V −1e)1(a− µ1c) + (V −1µ)1(µ1b− c)
(60)

λrest2 =
a1(c− bµ1) + br − c+ (V −1e)1(µ1 − r)

−∆+ (V −1e)1(a− µ1c) + (V −1µ)1(µ1b− c)
(61)

λrest3 =
a1∆+ (V −1e)1(a− rc) + (V −1µ)1(br − c)

−a1 (−∆+ (V −1e)1(a− µ1c) + (V −1µ)1(µ1b− c))
(62)

(63)

If we recall the optimal multipliers for the unrestricted problem

λ1 =
1

∆
(−a+ rc)

λ2 =
1

∆
(−c+ rb)

it follows, that the first two multipliers of the restricted problem are equal to the
unrestricted multipliers plus a correction. Although the expressions complicated,
they are still affine functions of r. If we insert the optimal multipliers in the opti-
mality condition for φ2, the optimal investment in the second asset is found. From
the structure of the multipliers and the affine form of φ∗2 follows, that the efficient
frontier is still a hyperbola for the investments (a1, φ

∗
2). But the form of the hyper-

bola is different than that one for the investment (φ∗1 > a1, φ
∗
2).

In the next example we go a step further, i.e. we consider still two risky assets
but both of them are restricted below and above. If we restrict to the two asset
case the problem is still manageable. Let

D1 =

(
λ3 0
0 λ4

)

, D2 =

(
λ5 0
0 λ6

)

and the optimality conditions are with the Assumptions 6

y = Aτ + w (64)

λj ≥ 0 , j = 3, 4, 5, 6

λj(aj − φj) = 0 , j = 3, 4 , λj(φj − bj) = 0 , j = 5, 6

with

w =

(
〈e, V −1D1a〉 − 〈e, V −1D2a〉
〈µ, V −1D1b〉 − 〈µ, V −1D2b〉

)

(65)
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and y,A, τ defined in (9). Since A is invertible, we get for the multipliers τ =
(λ1, λ2)

′

τ = A−1y −A−1w (66)

which are functions (due to the vector w) of the other multipliers λ3, . . . , λ6. If the
solution turns out to be an interior one, λ3, . . . , λ6 all are zero and τ and as well
φ∗ are the same as for the unrestricted problem.
To proceed we consider a single case out of the 32 = 9 possible cases. We assume
that the first component of the optimal portfolio binds (φ∗1 = a1) and that the
second one is an interior solution (a2 < φ∗2 < b2). From the normalization condition
we get a2 = 1 − a1 and we assume a2 < 1 − a1 < b2. Therefore the multipliers
λ4 = λ6 = 0 for the second component and also λ5 = 0 since the first component
can not bind at the lower boundary and at the higher boundary simultaneously.
We furthermore assume that the constraints are generic, i.e. that the consistency
conditions (??) are satisfied and that any summation over any two constraints does
not equal 1.
For the case under consideration, we get

w = λ3a1

(
V −1
11 + V −1

21

µ1V
−1
11 + µ2V

−1
21

)

=: λ3a1s . (67)

Hence,

λi = (A−1y)i − λ3a1(A−1y)i , i = 1, 2 . (68)

This implies that once λ3 is determined and and λ3 ≥ 0 verified, λ1, λ2 can be
determined from (68). The portfolio φ = (a1, 1−a1)′ is then, by the KKT theorem,
the solution of the restricted two-asset problem. To calculate λ3 we use

φ∗1 = a1 = λ1(V
−1e)1 + λ2(V

−1µ)1 + (V −1D1a)1

=
(
(A−1y)1 − λ3a1(A−1y)1

)
(V −1e)1 +

(
(A−1y)2 − λ3a1(A−1y)2

)
(V −1µ)1

+ λ3a1V
−1
11 .

Solving for λ3 and defining the vectors

m = ((A−1y)1, (A
−1y)2)

′ , n = ((V −1e)1, (V
−1µ)1)

′ (69)

we get

λ3 =
a1 − 〈m,n〉

a1(V
−1
11 − 〈m,n〉)

. (70)

So far, we can state:

Whether the optimal portfolio binds at a restriction and satisfies the KKT
condition that the respective multiplier is positive can not be answered in a
straightforward way. This is due to the fact that all parameters enter in the

conditions in a non-trivial way.

Since detV, a1 > 0, also V −1
11 = 1

detV V22 is positive, and a sufficient condition for
λ3 > 0 in (70) is

〈m,n〉 < 0 . (71)

In detail, this sufficiency condition reads

〈m,n〉 = (a− rc)(V22 − V12) (72)

+ (rb− b)(µ1V22 − µ2V12) < 0 .

To analyze further when λ3 is positive we plot this multiplier as a function of the
returns µ1, µ2 for different model parameters.
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Figure 10. The benchmark example. The expected return is
4 percent (r = 0.04) and the covariance matrix V is V =
(
0.4 0.18
0.18 0.37

)

. The two assets are therefore positively correlated.

The figure shows a level plot, i.e. λ3(µ1, µ2) = constant, where
the critical level λ3(µ1, µ2) = 0 is shown as the frontier curve be-
tween the white and the black region. In the white region λ3 is
positive. On the horizontal axis µ1 varies from −20 percent to +20
percent and on the vertical axis µ2 varies in the same range. The
restriction a1 is equal to 0.006.
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Figure 11. A 3-dimensional plot of the benchmark case.

The numerical values of the benchmark example are given in Figure ?? and
the variations of the benchmark are in the subsequent figures. In the benchmark
example, it follows that for varying returns of the two assets λ3 is positive in a
bounded domain for the returns of both assets (see Figure ??). Therefore, if either
of the returns is very high or low, the case that asset 1 binds at a1 can not be
optimal. Therefore, for a fixed covariance matrix there exist large enough returns
(positive and negative one) relative to the fixed risk structure such that binding at
the a1 is never optimal. This boundness is surprising since one would expect that
for very negative returns a binding of the portfolio at the lower constraint. But it



34 Optimal Portfolio Selection, Chapter 1 Version April 22, 2001

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

Figure 12. In this variation of the benchmark example the ex-
pected return r = 0.04 is raised to 12 percent. All other parameter
are unchanged. In the white region λ3 is positive.

follows from the figure, that a possible binding for the asset 1 at the lower constraint
is only asymmetric with respect to the sign of the return µ1. The return µ1 may
assume more negative values than positive ones such that the binding portfolio
is feasible. A further property is the position of the main axis of the ellipse-like
curve λ3(µ1, µ2) = 0. It follows that for a given small enough positive return µ1, a
positive return µ2 always exists such that asset 1 binds. Contrary negative returns
µ2 are more unlikely to exist such that λ3 ≥ 0 holds true; but nevertheless they
can exist.
In summary, the benchmark example shows that the following naive intuitions are
wrong:

(1) Whether or not assets bind is only due to their return properties and their
relative comparison. In fact all parameters of the model matter.

(2) If returns become arbitrary negative, the assets will bind at the lower
constraints.

In the benchmark, a1 is chosen to be equal to the low value 0.006. If we increase
a1 up to 30 percent, then λ3 > 0 in the whole parameter domain of the benchmark
example. Therefore, if the lower restriction is set large enough and if the optimum
binds, then the investor possesses a willingness to pay for a lower value of the
constraint. This is equivalent to λ3 > 0.
In Figure 4) the expected return r was altered from 4 to 12 percent. Then the
white region, which represents λ3 ≥ 0, is parallel shifted in direction of the second
quadrant. Consider a pair of positive returns µ1, µ2, µ2 smaller thanµ1, which in
the benchmark model led to λ3 > 0. If the expected return is raised, then the
constraint will typically no longer bind. But this makes sense, since for the investor
has to give up the binding constraint for asset 1, which has by assumption a larger
return than asset 2, else he can not cope with the raised expected return.
In Figure 8) the asset are negatively correlated. This has two effects: First the
region where λ3 ≥ 0 in the benchmark is rotated by 90 degrees and second, the
white domain, representing λ3 > 0 has a larger size. The second effect is clear,
since the two assets are ”substitutes” in this case and no longer ”complements”.
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Figure 13. In this variation of the benchmark example, we as-
sumed that the assets are negatively correlated. The covariance

matrix is V =

(
0.4 −0.18
−0.18 0.37

)

. In the white region λ3 is positive.
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Figure 14. The impact of restrictions on efficiency.

The terminology is defined as follows. Let j 6= k and consider

∂2W (φ)

∂φj∂φk
=

{
> 0 ⇐⇒ φj and φk are complements
< 0 ⇐⇒ φj and φk are substitutes

.

where W is the value or utility function of the good vector φ. In our case W =
〈φ, V φ〉 and the ”goods” is the portfolio. Therefore, if in the mean-variance model
a unit more invested in asset j decreases the marginal value of asset k, then we
substitute k with assets j.

Given this numerical examples for two assets only, we can state for the general
case ofN > 2 assets, that it is mostly impossible to decide without using a computer
to determine which restrictions in the model bind.
We next consider the impact of restrictions on efficiency (see Figure 8 for the setup).
The restricted expected portfolio return E[Rφ

∗
r ] is given by
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Figure 15. Case B: The level-plot illustrates the signs of H in
the benchmark example defined as follows: We assume that the
unrestricted optimal portfolio is φ∗f = (φ∗1, φ

∗
2) = (0.2, 0.8), that

V11 = V22 and that the correction δ = 0.1. On the horizontal axis
V22 varies and on the vertical axis the correlation V12. We note
that in the black region the variance of the restricted problem is
larger than the variance of the unrestricted problem.

E[Rφ
∗
r ] = µ1(φ

∗
1 + δ) + µ2(φ

∗
2 − δ) = E[Rφ

∗
f ] + δ(µ1 − µ2) (73)

with φ∗i , i = 1, 2, the components of the unrestricted optimal portfolio φ∗f . For the
respective variance of the portfolios we have

var(Rφ
∗
r ) = var(Rφ

∗
f ) + var(Rd) + 2〈d, V φ∗f 〉 (74)

where

d = (δ,−δ)′ , var(Rd) = 〈d, V d〉 . (75)

Since the fraction of wealth invested in asset 2 is larger than in asset 1 in the
unrestricted case, we assume that µ2 > µ1. Therefore, the constraint implies in
this case

E[Rφ
∗
r ] = r∗rest < E[Rφ

∗
f ] = r∗ ,

i.e. the expected return is smaller for the restricted, optimal portfolio than in the
unrestrictd case. We analyze when

var(Rφ
∗
r ) > var(Rφ

∗
f )

holds, which then implies that the constraints enforce to choose a dominated port-
folio.
The condition var(Rφ

∗
r ) > var(Rφ

∗
f ) is equivalent to (assuming that V12 = V21)

H = δ2(V11 + V22 − 2V12) + 2δ(φ1V11 − φ2V22 + V12(φ2 − φ1)) > 0 . (76)

We consider the sign of H in the examples shown in Figures 8 to 8. The values of
the expression H are shown as a function of the variance V22 and the correlation
V12 between the assets.

It follows that a variation in the relative magnitudes between the variances of
the two assets has a very weak impact on the the sign of the function H.
We discuss the content of the figures 8 (benchmark case B), 8 (higher unrestricted
value φ∗2, case 2) and 8 (larger correction δ, case 3). It follows, given the model
parameters, the possibility that a dominated portfolio is selected is higher (relative
to the benchmark) if the correction δ is larger. Therefore, the more severe are the



Optimal Portfolio Selection Chapter 1 Version: April 22, 2001 37

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Figure 16. Case 2: The same parameters hold as in the bench-
mark example but the optimal unrestricted portfolio component is
assumed to be φ∗2 = 0.9.
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Figure 17. Case 3: The same parameters hold as in the bench-
mark example but the correction of portfolio fractions is augmented
to δ = 0.3 from δ = 0.1.

restrictions acting on the unrestricted optimum, the more will dominated portfo-
lios be selected. Contrary if the unrestricted, optimal value φ22 is larger than in the
benchmark case, the possibility of the restrictions leading to dominated portfolios
is lower than in the benchmark case.
For the further discussion, consider Figure 8. The figure indicates graphically the
possible location ordering of the three cases under consideration. It also shows the
impact of changing factors in the correlation matrix. If the two assets are positively
correlated, a restriction on the “better” asset φ2 leads for an increasing correlation
to a non-dominated portfolio o. This is intuitively clear since substitution takes
place with an asset which is “in line” with the substituted asset. Contrary, if substi-
tution is with a strongly negatively correlated asset, the possibility of a dominated
portfolio choice increases.

In summary, the following insights are gained in this section.
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Figure 18. Comparison of the cases B, 2 and 3, respectively, in
the (σ(r), r)-space.

• Mean-variance analysis with linear investment restriction is simple in prin-
ciple to carry out but already for a few number of assets, there is a large
number of cases to be analyzed.

• Referring to the next section, there are powerful numerical methods to
analyze portfolio selection problem with linear investment restrictions.

• Whether or not assets bind at their restriction values is not only due
to their return properties, but all parameters of the model matter in a
complicated way.

• Restrictions may well lead to dominated portfolio choices relative to the
unrestricted selection. Again, this possibility depends on all parameter of
the model in an essentially non-trivial way.

If we consider these facts, we conclude that we have to separate restrictions which
(i) are due to market rules and (ii) restrictions imposed by regulatory authorities
or by the asset managers themselves.
While the first type of rules have to be incorporated into portfolio selection models,
such as existing short sale restrictions for example, restrictions of the type (ii) should
be avoided. To understand the reason for this statement consider we consider
the situation where fund managers are interested in an optimal asset allocation.
Suppose they agree to use mean and variance as their decision criteria. Typically,
asset managers then like to impose asset restrictions of the linear type discussed in
this section and in a second step, the restricted mean-variance problem is solved.
The reason to choose restrictions first, is due to their intuition that the result has
to be “well-diversified”, i.e. “The fraction invested in asset j should not be smaller
and higher than the prescribed values x and y respectively”. But this contradicts
the logic of the model. Since the unrestricted model provides the managers already
with the optimal diversification, there is no need to control this solution. It could
also be, that the fund managers ”know” what is reasonable and they want to prevent
that a ”unreasonable” solution occurs. In any case, this behavior reflects that the
mean-variance model under consideration is not appropriate for decision making
and a sound modelling should be considered in such situations. In other words,
another objective function should be chosen and not the admissible set restricted.
In the following chapters we will see what happens if other objectives are agreed
upon than the mean and variance of a portfolio.
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9. Equivalent formulations of mean-variance portfolio selection

In the discussion of the mean-variance selection problem we always worked with
the model M. In fact, there exist other model formulations which are equivalent
to this model. This means, that they lead to an optimal portfolio choice with the
same expected return and variance than in the case considered so far.
A possible model is

min
ψ

1

2
〈ψ, V ψ〉 − ρ〈µ, φ〉 , (M1) (77)

s.t. 〈ψ, e〉 = 1, ψ ∈ RN ,

(78)

with ρ an exogenous parameter. The solution of this model is

ψ∗ = V −1(ρµ+ λe) , λ =
1− ρc
b

. (79)

The two portfolios ψ∗ and φ∗ of Proposition 8 are equivalent, iff

〈ψ∗, µ〉 = 〈φ∗, µ〉 , σ2φ∗(r) = σ2ψ∗(ρ) , (80)

where in the risk measure the explicit dependence on the respective model param-
eters are shown. A short calculation shows that the variance condition is always
satisfied iff

r =
ρ∆+ c

b
. (81)

To prove this, we calculate

〈ψ∗, V ψ∗〉 = ρ2
∆

b
+

1

b

and compare it with

〈φ∗, V φ∗〉 = 1

∆
(r2b− 2rc+ a) .

The linear relation between r and ρ in (81) guarantees that the expected returns and
the variances in both models agree. Therefore, for any choice of desired expected
return r there exist a value ρ such that the model M1 leads to the same outcome.
This proves that the two models are equivalent.
Although the two models are mathematically equivalent they may not be equivalent
from a behavioral point of view. Consider an investor which plans to find out its
optimal one-period investment according to the mean-variance criterion. In the
model M he needs then to fix the desired rate r, whereas in the model M1 he
has to determine the trade-off between risk and return by selecting the parameter
ρ. The equivalence of the models designs an experiment for a laboratory to test
peoples rationality in decision making under uncertainty.


